Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.

Identifieur interne : 000034 ( Main/Exploration ); précédent : 000033; suivant : 000035

Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.

Auteurs : Jeffrey I. Hogberg [Canada] ; M Derek Mackenzie [Canada] ; Bradley D. Pinno [Canada]

Source :

RBID : pubmed:33016353

Descripteurs français

English descriptors

Abstract

Land reclamation in the Athabasca oil sands region requires construction of entire soil profiles from materials salvaged during mining. Although much attention has been paid to the limited supply of suitable topsoil materials and their impact on ecosystem recovery, suitable clean subsoil materials are also in limited supply, and their efficient and effective use is an important consideration for land managers in the region. Using data from an oil sands reclamation site in northern Alberta, Canada, we compared soil and foliar nutrients to a wildfire-impacted reference ecosystem with a similarity index. Specifically, we evaluated the similarity of forest floor-mineral mix (FFM) and peat-mineral mix (PM) as topsoil, as well as the effect of different depths of salvaged B and C horizon subsoil with PM on top. All reclamation treatments were planted with jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.), which were used to examine foliar nutrient concentrations. Individual macronutrient concentrations were different among treatments in total soil nutrients, but differences decreased in soil bioavailable nutrients and disappeared altogether in foliar nutrients. The similarity index revealed that distinct differences existed between treatments, with FFM being the most similar to the wildfire site. It also revealed a potential deficiency in foliar and soil bioavailable Mn on PM, and that increased water content of deeper subsoils had little to no effect. With use of this nutrient profile similarity index, reclamation practitioners may be able to determine if different soil prescriptions lead to higher levels of similarity to natural ecosystems more quickly.

DOI: 10.1002/jeq2.20026
PubMed: 33016353


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.</title>
<author>
<name sortKey="Hogberg, Jeffrey I" sort="Hogberg, Jeffrey I" uniqKey="Hogberg J" first="Jeffrey I" last="Hogberg">Jeffrey I. Hogberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mackenzie, M Derek" sort="Mackenzie, M Derek" uniqKey="Mackenzie M" first="M Derek" last="Mackenzie">M Derek Mackenzie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinno, Bradley D" sort="Pinno, Bradley D" uniqKey="Pinno B" first="Bradley D" last="Pinno">Bradley D. Pinno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 St, Edmonton, AB, T6H 3S5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 St, Edmonton, AB, T6H 3S5</wicri:regionArea>
<wicri:noRegion>T6H 3S5</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33016353</idno>
<idno type="pmid">33016353</idno>
<idno type="doi">10.1002/jeq2.20026</idno>
<idno type="wicri:Area/Main/Corpus">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000072</idno>
<idno type="wicri:Area/Main/Curation">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000072</idno>
<idno type="wicri:Area/Main/Exploration">000072</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.</title>
<author>
<name sortKey="Hogberg, Jeffrey I" sort="Hogberg, Jeffrey I" uniqKey="Hogberg J" first="Jeffrey I" last="Hogberg">Jeffrey I. Hogberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mackenzie, M Derek" sort="Mackenzie, M Derek" uniqKey="Mackenzie M" first="M Derek" last="Mackenzie">M Derek Mackenzie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinno, Bradley D" sort="Pinno, Bradley D" uniqKey="Pinno B" first="Bradley D" last="Pinno">Bradley D. Pinno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3</wicri:regionArea>
<wicri:noRegion>T6G 2R3</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 St, Edmonton, AB, T6H 3S5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 St, Edmonton, AB, T6H 3S5</wicri:regionArea>
<wicri:noRegion>T6H 3S5</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of environmental quality</title>
<idno type="eISSN">1537-2537</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alberta (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Nutrients (MeSH)</term>
<term>Oil and Gas Fields (MeSH)</term>
<term>Sheep (MeSH)</term>
<term>Soil (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alberta (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Champs de pétrole et de gaz (MeSH)</term>
<term>Nutriments (MeSH)</term>
<term>Ovis (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Alberta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Ecosystem</term>
<term>Nutrients</term>
<term>Oil and Gas Fields</term>
<term>Sheep</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alberta</term>
<term>Animaux</term>
<term>Champs de pétrole et de gaz</term>
<term>Nutriments</term>
<term>Ovis</term>
<term>Sol</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Land reclamation in the Athabasca oil sands region requires construction of entire soil profiles from materials salvaged during mining. Although much attention has been paid to the limited supply of suitable topsoil materials and their impact on ecosystem recovery, suitable clean subsoil materials are also in limited supply, and their efficient and effective use is an important consideration for land managers in the region. Using data from an oil sands reclamation site in northern Alberta, Canada, we compared soil and foliar nutrients to a wildfire-impacted reference ecosystem with a similarity index. Specifically, we evaluated the similarity of forest floor-mineral mix (FFM) and peat-mineral mix (PM) as topsoil, as well as the effect of different depths of salvaged B and C horizon subsoil with PM on top. All reclamation treatments were planted with jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.), which were used to examine foliar nutrient concentrations. Individual macronutrient concentrations were different among treatments in total soil nutrients, but differences decreased in soil bioavailable nutrients and disappeared altogether in foliar nutrients. The similarity index revealed that distinct differences existed between treatments, with FFM being the most similar to the wildfire site. It also revealed a potential deficiency in foliar and soil bioavailable Mn on PM, and that increased water content of deeper subsoils had little to no effect. With use of this nutrient profile similarity index, reclamation practitioners may be able to determine if different soil prescriptions lead to higher levels of similarity to natural ecosystems more quickly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">33016353</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2537</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of environmental quality</Title>
<ISOAbbreviation>J Environ Qual</ISOAbbreviation>
</Journal>
<ArticleTitle>Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.</ArticleTitle>
<Pagination>
<MedlinePgn>61-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jeq2.20026</ELocationID>
<Abstract>
<AbstractText>Land reclamation in the Athabasca oil sands region requires construction of entire soil profiles from materials salvaged during mining. Although much attention has been paid to the limited supply of suitable topsoil materials and their impact on ecosystem recovery, suitable clean subsoil materials are also in limited supply, and their efficient and effective use is an important consideration for land managers in the region. Using data from an oil sands reclamation site in northern Alberta, Canada, we compared soil and foliar nutrients to a wildfire-impacted reference ecosystem with a similarity index. Specifically, we evaluated the similarity of forest floor-mineral mix (FFM) and peat-mineral mix (PM) as topsoil, as well as the effect of different depths of salvaged B and C horizon subsoil with PM on top. All reclamation treatments were planted with jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.), which were used to examine foliar nutrient concentrations. Individual macronutrient concentrations were different among treatments in total soil nutrients, but differences decreased in soil bioavailable nutrients and disappeared altogether in foliar nutrients. The similarity index revealed that distinct differences existed between treatments, with FFM being the most similar to the wildfire site. It also revealed a potential deficiency in foliar and soil bioavailable Mn on PM, and that increased water content of deeper subsoils had little to no effect. With use of this nutrient profile similarity index, reclamation practitioners may be able to determine if different soil prescriptions lead to higher levels of similarity to natural ecosystems more quickly.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Journal of Environmental Quality © 2019 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hogberg</LastName>
<ForeName>Jeffrey I</ForeName>
<Initials>JI</Initials>
<AffiliationInfo>
<Affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>MacKenzie</LastName>
<ForeName>M Derek</ForeName>
<Initials>MD</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9292-976X</Identifier>
<AffiliationInfo>
<Affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinno</LastName>
<ForeName>Bradley D</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>Dep. of Renewable Resources, Univ. of Alberta, 3-48 South Academic Building, Edmonton, AB, T6G 2R3, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 St, Edmonton, AB, T6H 3S5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Syncrude Canada LTD</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Environ Qual</MedlineTA>
<NlmUniqueID>0330666</NlmUniqueID>
<ISSNLinking>0047-2425</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000416" MajorTopicYN="N" Type="Geographic">Alberta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061329" MajorTopicYN="Y">Oil and Gas Fields</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012756" MajorTopicYN="N">Sheep</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>8</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33016353</ArticleId>
<ArticleId IdType="doi">10.1002/jeq2.20026</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alberta Environment and Sustainable Resource Development (AESRD). (2013). Criteria and indicators framework for oil sands mine reclamation certification. Prepared by Mike Poscente and Theo Charette of Charette Pell Poscente Environmental Corporation for the Reclamation Working Group of the Cumulative Environmental Management Association, Fort McMurray, AB. Gov. Alberta, Edmonton, AB, Canada.</Citation>
</Reference>
<Reference>
<Citation>Baker, D. E., & Suhr, N. H. (1982). Atomic absorption and flame emission spectrometry. In A. L. Page (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (2nd ed., pp. 13-27). Madison, WI: ASA and SSSA. https://doi.org/10.2134/agronmonogr9.2.2ed.c2</Citation>
</Reference>
<Reference>
<Citation>Ballard, T. M., & Carter, R. E. (1986). Evaluating forest stand nutrient status (Land Management Report 20). Victoria, BC, Canada: British Columbia Ministry of Forests.</Citation>
</Reference>
<Reference>
<Citation>Barber, L., Bockstette, J., Christensen, D., Tallon, L., & Landhäusser, S. (2015). Effect of soil cover system design on cover system performance and early tree establishment. In A. B. Fourie, M. Tibbett, L. Sawatsky, & D. Van Zyl (Eds.), Mine closure 2015 (pp. 1071-1080). Vancouver, BC, Canada: InfoMine.</Citation>
</Reference>
<Reference>
<Citation>Beckingham, J. D., & Archibald, J. H. (1996). Field guide to ecosites of northern Alberta (Special Report 5). Edmonton, AB, Canada: Northern Forestry Centre.</Citation>
</Reference>
<Reference>
<Citation>Brejda, J. J., Moorman, T. B., Karlen, D. L., & Dao, T. H. (2000). Identification of regional soil quality factors and indicators: I. Central and southern high plains. Soil Science Society of America Journal, 64, 2115-2124. https://doi.org/10.2136/sssaj2000.6462115x</Citation>
</Reference>
<Reference>
<Citation>Chang, S. X., Preston, C. M., McCullogh, K., Weetman, G. F., & Barker, J. (1996). Effect of understory competition on distribution and recovery of 15N applied to a western red cedar-western hemlock clear-cut site. Canadian Journal of Forest Research, 26, 313-321. https://doi.org/10.1139/x26-035</Citation>
</Reference>
<Reference>
<Citation>Cumulative Environmental Management Association. (2006). Land capability classification system for forest ecosystems in the oil sands. Edmonton, AB, Canada: Cumulative Environmental Management Association. Retrieved from http://cemaonline.ca/index.php/cema-recommendations/land-capability-classification</Citation>
</Reference>
<Reference>
<Citation>Environment Canada. (2016). Canadian climate normals 1981-2010, Fort McMurray Station data. Environment Canada. Retrieved from http://climate.weather.gc.ca/</Citation>
</Reference>
<Reference>
<Citation>Environment and Sustainable Resource Development (ESRD). (2013). 2010 Reclamation criteria for wellsites and associated facilities for forested lands (updated July 2013). Edmonton, AB, Canada: ESRD.</Citation>
</Reference>
<Reference>
<Citation>Fung, M. Y. P., & Macyk, T. M. (2000). Reclamation of oil sands mining areas. In R. I. Barmhisel, R. G. Darmody, & W. L. Daniels (Eds.), Reclamation of drastically disturbed lands (pp. 755-774). Madison, WI: ASA, CSSA, and SSSA. https://doi.org/10.2134/agronmonogr41.c30</Citation>
</Reference>
<Reference>
<Citation>Hankin, S. L., Karst, J., & Landhäusser, S. M. (2015). Influence of tree species and salvaged soils on the recovery of ectomycorrhizal fungi in upland boreal forest restoration after surface mining. Botany, 93, 267-277. https://doi.org/10.1139/cjb-2014-0132</Citation>
</Reference>
<Reference>
<Citation>Haynes, R. J., & Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51, 123-137. https://doi.org/10.1023/A:1009738307837</Citation>
</Reference>
<Reference>
<Citation>Hogberg, J. I., Pinno, B. D., & MacKenzie, M. D. (2019). Evaluating foliar nutrient concentration as an indicator of soil nutrient concentrations in natural and reclaimed forests in Alberta, Canada. International Journal of Mining, Reclamation and Environment, 34, 75-87. https://doi.org/10.1080/17480930.2018.1516330</Citation>
</Reference>
<Reference>
<Citation>Hu, Y.-L., Hu, Y., Zeng, D.-H., Tan, X., & Chang, S. X. (2015). Exponential fertilization and plant competition effects on the growth and N nutrition of trembling aspen and white spruce seedlings. Canadian Journal of Forest Research, 45, 78-86. https://doi.org/10.1139/cjfr-2014-0187</Citation>
</Reference>
<Reference>
<Citation>Johnson, D. W., Verburg, P., & Arnone, J. (2005). Soil extraction, ion exchange resin, and ion exchange membrane measures of soil mineral nitrogen during incubation of a tallgrass prairie soil. Soil Science Society of America Journal, 69, 260-265. https://doi.org/10.2136/sssaj2005.0260</Citation>
</Reference>
<Reference>
<Citation>Jung, K., Duan, M., House, J., & Chang, S. X. (2014). Textural interfaces affected the distribution of roots, water, and nutrients in some reconstructed forest soils in the Athabasca oil sands region. Ecological Engineering, 64, 240-249. https://doi.org/10.1016/j.ecoleng.2013.12.037</Citation>
</Reference>
<Reference>
<Citation>Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Edmonton, AB, Canada: Northern Forestry Centre.</Citation>
</Reference>
<Reference>
<Citation>Kessler, S., Barbour, S. L., van Rees, K. C. J., & Dobchuk, B. S. (2010). Salinization of soil over saline-sodic overburden from the oil sands in Alberta. Canadian Journal of Soil Science, 90, 637-647. https://doi.org/10.4141/cjss10019</Citation>
</Reference>
<Reference>
<Citation>Macdonald, S. E., Quideau, S. A., & Landhäusser, S. M. (2012). Rebuilding forest ecosystems after industrial disturbance. In D. H. Vitt & J. S. Bhatti (Eds.), Restoration and reclamation of boreal ecosystems: Attaining sustainable development (pp. 123-160). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139059152.010</Citation>
</Reference>
<Reference>
<Citation>Macdonald, S. E., Snively, A. E. K., Fair, J. M., & Landhäusser, S. M. (2015b). Early trajectories of forest understory development on reclamation sites: Influence of forest floor placement and a cover crop. Restoration Ecology, 23, 698-706. https://doi.org/10.1111/rec.12217</Citation>
</Reference>
<Reference>
<Citation>MacKenzie, M. D., Hofstetter, S., Hatam, I., & Lanoil, B. (2014). Carbon and nitrogen mineralization and microbial succession in oil sands reclamation soils amended with pyrogenic carbon (OSRIN Report No. TR-71). Edmonton, AB, Canada: Oil Sands Research and Information Network. Retrieved from http://hdl.handle.net/10402/era.40354</Citation>
</Reference>
<Reference>
<Citation>Mackenzie, D. D., & Naeth, M. A. (2010). The role of the forest soil propagule bank in assisted natural recovery after oil sands mining. Restoration Ecology, 18, 418-427. https://doi.org/10.1111/j.1526-100X.2008.00500.x</Citation>
</Reference>
<Reference>
<Citation>MacKenzie, M. D., & Quideau, S. A. (2010). Microbial community structure and nutrient availability in oil sands reclaimed boreal forests. Applied Soil Ecology, 44, 32-41. https://doi.org/10.1016/j.apsoil.2009.09.002</Citation>
</Reference>
<Reference>
<Citation>MacKenzie, M. D., & Quideau, S. A. (2012). Laboratory-based nitrogen mineralization and biogeochemistry of two soils used in oil sands reclamation. Canadian Journal of Soil Science, 92, 131-142. https://doi.org/10.4141/cjss2010-070</Citation>
</Reference>
<Reference>
<Citation>Marschner, H. (2002). Mineral nutrition of higher plants (2nd ed.). San Diego, CA: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2008). Alternative soil quality indices for evaluating the effect of intensive cropping, fertilization and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136, 419-435. https://doi.org/10.1007/s10661-007-9697-z</Citation>
</Reference>
<Reference>
<Citation>McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design.</Citation>
</Reference>
<Reference>
<Citation>McMillan, R., Quideau, S. A., MacKenzie, M. D., & Biryukova, O. (2007). Nitrogen mineralization and microbial activity in oil sands reclaimed boreal forest soils. Journal of Environmental Quality, 36, 1470-1478. https://doi.org/10.2134/jeq2006.0530</Citation>
</Reference>
<Reference>
<Citation>Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2014). Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering, 71, 10-20. https://doi.org/10.1016/j.ecoleng.2014.07.001</Citation>
</Reference>
<Reference>
<Citation>Naeth, M. A., Chanasyk, D. S., & Burgers, T. D. (2011). Vegetation and soil water interactions on a tailings sand storage facility in the Athabasca oil sands region of Alberta. Canada Phys Chem Earth, 36, 19-30. https://doi.org/10.1016/j.pce.2010.10.003</Citation>
</Reference>
<Reference>
<Citation>Natural Regions Committee. (2006). Natural regions and subregions of Alberta (Compiled by D.J. Downing and W.W. Pettapiece, Publication T/852). Edmonton, AB, Canada: Government of Alberta.</Citation>
</Reference>
<Reference>
<Citation>Ojekanmi, A. A., & Chang, S. X. (2014). Soil quality assessment for peat-mineral mix cover soil used in oil sands reclamation. Journal of Environmental Quality, 43, 1566-1575. https://doi.org/10.2134/jeq2014.02.0061</Citation>
</Reference>
<Reference>
<Citation>Pinno, B. D., & Errington, R. C. (2016). Burn severity dominates understory plant community response to fire in xeric jack pine forests. Forests, 7, 83. https://doi.org/10.3390/f7040083</Citation>
</Reference>
<Reference>
<Citation>R Core Development Team. (2015). R: A language and environment for statistical computing 3.2.2 (“Fire Safety”). Vienna: R Foundation for Statistical Computing.</Citation>
</Reference>
<Reference>
<Citation>R Core Development Team. (2016). R: A language and environment for statistical computing 3.3.0 (“Supposedly Educational”). Vienna: R Foundation for Statistical Computing.</Citation>
</Reference>
<Reference>
<Citation>Rowland, S. M., Prescott, C. E., Grayston, S. J., Quideau, S. A., & Bradfield, G. E. (2009). Recreating a functioning forest soil in reclaimed oil sands in northern Alberta: An approach for measuring success in ecological restoration. Journal of Environmental Quality, 38, 1580-1590. https://doi.org/10.2134/jeq2008.0317</Citation>
</Reference>
<Reference>
<Citation>Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99-114. https://doi.org/10.2307/3001913</Citation>
</Reference>
<Reference>
<Citation>Van Lierop, W. (1988). Determination of available phosphorus in acid and calcareous soils with the Kelowna multiple-element extractant. Soil Science, 146, 284-291. https://doi.org/10.1097/00010694-198810000-00009</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Hogberg, Jeffrey I" sort="Hogberg, Jeffrey I" uniqKey="Hogberg J" first="Jeffrey I" last="Hogberg">Jeffrey I. Hogberg</name>
</noRegion>
<name sortKey="Mackenzie, M Derek" sort="Mackenzie, M Derek" uniqKey="Mackenzie M" first="M Derek" last="Mackenzie">M Derek Mackenzie</name>
<name sortKey="Pinno, Bradley D" sort="Pinno, Bradley D" uniqKey="Pinno B" first="Bradley D" last="Pinno">Bradley D. Pinno</name>
<name sortKey="Pinno, Bradley D" sort="Pinno, Bradley D" uniqKey="Pinno B" first="Bradley D" last="Pinno">Bradley D. Pinno</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000034 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000034 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33016353
   |texte=   Using a nutrient profile index to assess reclamation strategies in the Athabasca oil sands region of northern Alberta.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33016353" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020